MYOB Exo Business White Paper

Secure Third-Party Logins for Developers

Last modified: 13 August 2020




Introduction

In release 2019.4.1 of Exo Business, we updated the login parameter for launching Exo
applications. You can learn more about this in the MYOB Exo Business Release Notes
for release 2019.4.1.

This whitepaper contains sample Pascal and C# code that you can use with a third-
party application to take advantage of this enhancement.

Sample Pascal Code

Below is a sample of Pascal code that you can incorporate into a third-party
application to take advantage of the <ThirdPartyLogin> connection parameter:

unit ThirdPartyUtils;
interface

{

Sample code to read and check third party login information

}

function CalcHash (const AppPassword, Salt: string): string;
function CheckPassword (const AppPassword, MapName: string): Boolean;

implementation

uses
Winapi.Windows,
System.Classes,
System.SysUtils,
System.Hash,
System.NetEncoding;

function CalcHash (const AppPassword, Salt: string): string;
var

lHashVal: string;

HashBytes: TBytes;

begin
1HashVal := Salt + AppPassword;
HashBytes := THashSHA2.GetHashBytes (l1HashVal) ;
Result := TBaseb64Encoding.Base64.EncodeBytesToString (HashBytes); end;

function CheckPassword (const AppPassword, MapName: string): Boolean; var
Hash: string;
MapHandle: THandle;
ptr: Pointer;
MapValue: UTF8String;
begin
MapHandle := OpenFileMapping (FILE MAP READ, False, PChar (MapName)) ;
if MapHandle = 0 then
RaiselLastOSError;
try
ptr := MapViewOfFile (MapHandle, FILE MAP READ, 0, 0, 0);
if ptr = nil then
RaiselastOSError;
try

Exo Business White Paper | Secure Third-Party Logins for Developers Page 10of 4
Copyright 2020 MYOB Technology Pty Ltd.


https://help.myob.com.au/exo/releasenotes/exo20194/MYOB%20EXO%20Business%20Release%20Notes.pdf
https://help.myob.com.au/exo/releasenotes/exo20194/MYOB%20EXO%20Business%20Release%20Notes.pdf

MapValue := PAnsiChar (ptr);

Hash := CalcHash (AppPassword, MapName) ;
Result := UTF8Encode (Hash) = MapValue;
Finally
UnmapViewOfFile (ptr) ;
end;
finally
CloseHandle (MapHandle); end;
end;

end.

Exo Business writes the SHA256 hash of the GUID and the hashed value of the
password to Exo's memory map.

Using the code above, a third-party application reads the hash value from Exo's
memory map, then calculates the hash from the GUID and the password. If the
calculated hash is the same as the hash in the memory map, the user is granted
access.

Exo Business White Paper | Secure Third-Party Logins for Developers Page 2 of 4
Copyright 2020 MYOB Technology Pty Ltd.



Sample C# Code

As a utility class:

using System;

using System.IO;

using System.IO.MemoryMappedFiles;
using System.Security.Cryptography;

namespace MYOB.ThirdParty
{
public static class LoginHandler
{
public static string ReadMemoryMap (string MapName)
{
var mappedFile = MemoryMappedFile.OpenExisting (MapName,
MemoryMappedFileRights.ReadWrite); // Read fails, but ReadWrite works
using (var view = mappedFile.CreateViewStream())
{
var reader = new BinaryReader (view) ;
var contents = reader.ReadBytes(44); // length of Base64 encoded
SHA256 Hash (256bit -> 32bytes -> 44 characters)
return System.Text.Encoding.UTF8.GetString (contents) ;
}
}

public static string CalcHash (string Password, string Salt)

{

var hashval = Salt + Password;
var textData = System.Text.Encoding.UTF8.GetBytes (hashVal) ;
using (var sha256 = SHA256.Create())

{
var HashBytes = sha256.ComputeHash (textData) ;
return Convert.ToBase64String (HashBytes) ;

}

Exo Business White Paper | Secure Third-Party Logins for Developers Page 30of4
Copyright 2020 MYOB Technology Pty Ltd.



Example calling code (as a console application):

Exo Business White Paper | Secure Third-Party Logins for Developers Page 4 of 4
Copyright 2020 MYOB Technology Pty Ltd.



	Introduction
	Sample Pascal Code
	Sample C# Code

